
Resit Exam — Complex Analysis

Aletta Jacobshal 01, Wednesday 25 February 2015, 18:30 - 21:30

Duration: 3 hours

Instructions

1. The test consists of 6 questions; answer all of them.

2. Each question gets 15 points and the number of points for each subquestion is indicated
at the beginning of the subquestion. 10 points are “free” and the total number of points
is divided by 10. The final grade will be between 1 and 10.

3. The use of books, notes, and calculators is not allowed.

Question 1 (15 points)

Consider the function f(z) = ze−iz with z in C.

a. (7 points) Write f(z) as a sum of a real and an imaginary part, in other words, in the
form u(x, y) + iv(x, y) where z = x+ iy.

b. (8 points) Use the Cauchy-Riemann equations to show that f(z) is entire.

Solution

a. We have

f(z) = (x+ iy)e−i(x+iy) = (x+ iy)ey−ix = (x+ iy)ey(cosx− i sinx)

= ey(x cosx+ y sinx) + iey(y cosx− x sinx).

Therefore

u(x, y) = ey(x cosx+ y sinx), v(x, y) = ey(y cosx− x sinx).

b. We check that

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

We have

∂u

∂x
= ey(cosx− x sinx+ y cosx),

and

∂v

∂y
= ey(y cosx− x sinx+ cosx) =

∂u

∂x
.

Furthermore,

∂u

∂y
= ey(x cosx+ y sinx+ sinx),

and

∂v

∂x
= ey(−y sinx− sinx− x cosx) = −∂u

∂y
.

Therefore the Cauchy-Riemann equations are satisfied and the partial derivatives are
continuous on C so f is analytic on C, that is, entire.
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Question 2 (15 points)

Consider the function

f(z) =
1

z(z + 1)
.

a. (9 points) Find the Laurent series for f(z) in 0 < |z| < 1.

b. (6 points) What is the type of the singularity of f(z) at 0? Explain your answer.

Solution

a. The Taylor series for 1/(1− w) is known to be

1

1− w
= 1 + w + w2 + · · · =

∞∑
j=0

wj ,

for |w| < 1. Then

1

z + 1
=

1

1− (−z)
=

∞∑
j=0

(−z)j = 1− z + z2 − z3 + · · · ,

for | − z| < 1, i.e., for |z| < 1.
Therefore, for |z| < 1 we have

1

z(z + 1)
=

1

z

∞∑
j=0

(−z)j =
∞∑
j=0

(−1)jzj−1 =
∞∑

k=−1

(−1)k+1zk =
1

z
− 1 + z − z2 + · · · .

b. The Laurent series of f at 0 contains exactly one negative power z−1 therefore 0 is a pole
of order 1.
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Question 3 (15 points)

Consider the function

f(z) =
eiz

z2 + 4
.

a. (6 points) Compute the residue of f(z) at each one of the singularities of the function.

b. (9 points) Evaluate

pv

∫ ∞
−∞

eix

x2 + 4
dx.

Solution

a. The given function

f(z) =
eiz

z2 + 4
=

eiz

(z − 2i)(z + 2i)
.

has singularities at z = ±2i. We have

Res(f ; 2i) = lim
z→2i

(z − 2i)f(z) = lim
z→2i

eiz

z + 2i
=

1

4ie2
,

and

Res(f ;−2i) = lim
z→−2i

(z + 2i)f(z) = lim
z→−2i

eiz

z − 2i
= −e

2

4i
.

b. We have

pv

∫ ∞
−∞

eix

x2 + 4
dx = lim

r→∞
Ir,

where

Ir =

∫ r

−r

eix

x2 + 4
dx =

∫
γr

f(z) dz,

with f(z) as in the previous subquestion and γr the straight line contour from −r to r
along the real axis.
We define the closed contour Γr = γr+C+

r where C+
r is the semicircle |z| = r in the upper

half-plane going from r to −r. Therefore∫
Γr

f(z) dz = Ir +

∫
C+

r

f(z) dz.

This implies

lim
r→∞

∫
Γr

f(z) dz = lim
r→∞

Ir + lim
r→∞

∫
C+

r

f(z) dz = I + lim
r→∞

∫
C+

r

f(z) dz,

and

I = lim
r→∞

∫
Γr

f(z) dz − lim
r→∞

∫
C+

r

f(z) dz.
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For any r > 2 we have that 2i is the only singularity of f inside Γr, therefore

lim
r→∞

∫
Γr

f(z) dz = 2πiRes(f, 2i) = 2πi
1

4ie2
=

π

2e2
.

From Jordan’s lemma we also know that

lim
r→∞

∫
C+

r

eiz

z2 + 4
dz = 0.

Therefore

I =
π

2e2
.
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Question 4 (15 points)

a. (7 points) Given the function

f(z) = z (z + 2)

(
z − i

2

)2

compute the integral ∫
C

f ′(z)

f(z)
dz,

where C is the positively oriented circular contour with |z| = 1.

b. (8 points) Use Rouché’s theorem to show that the polynomial P (z) = z3 − 1
2z

2 + 1 has
exactly 3 roots in the disk |z| < 2.

Solution

a. The function f is entire and is therefore analytic on and inside C. We can then apply the
Argument Principle to obtain that∫

C

f ′(z)

f(z)
dz = 2πiN0(f),

where N0(f) is the number of zeros of f inside C (counting multiplicities). The only zeros
of f inside C are i/2 with multiplicity 2, and 0 with multiplicity 1. Therefore N0(f) = 3
and ∫

C

f ′(z)

f(z)
dz = 6πi.

b. Consider the closed contour C given by |z| = 2 and the functions f(z) = z3 and h(z) =
−1

2z
2 + 1, so that P (z) = f(z) + h(z).

Then on C we have

|f(z)| = |z|3 = 23 = 8,

and

|h(z)| ≤
∣∣∣∣−1

2

∣∣∣∣ |z|2 + |1| = 3 < |f(z)|.

Both f and h are entire functions and in particular they are analytic on and inside C,
and since |f(z)| < h(z) on C, Rouché’s theorem can be applied and we obtain

N0(f) = N0(P ).

Furthermore, N0(f) = 3 so P (z) has 3 zeros inside C.
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Question 5 (15 points)

We denote by Log z the principal value of the logarithm log z.

a. (7 points) Prove that Log(ez) = z if and only if −π < Im z ≤ π.

b. (8 points) Construct a branch of log(z+ 4) that is analytic at the point z = −5 and takes
the value 7πi there.

Solution

a. We have that

Log z = Log |z|+ iArg z,

where Arg z is the principal argument. Therefore, if we write z = x+ iy we have that

Log ez = Log(exeiy) = Log(ex) + i(y + 2kπ) = x+ i(y + 2kπ),

where k ∈ Z is such that −π < y + 2kπ ≤ π.
Therefore, if

Log(ez) = z,

then

x+ i(y + 2kπ) = x+ iy,

so k = 0, implying that −π < y ≤ π. On the other hand, if −π < y ≤ π then k must be
0, therefore Log(ez) = z.
[One can also say that Log(ez) = z if and only if x + i(y + 2kπ) = x + iy if and only if
k = 0 if and only if −π < y ≤ π.]

b. By letting w = z+4 we can translate the given requirements to finding a branch of log(w)
that is analytic at w = −5 + 4 = −1 and such that log(−1) = 7πi.
Since we need that the branch is analytic at −1 we can make a cut along the positive
x-axis (including 0). Note that

log(−1) = Log | − 1|+ i arg(−1) = i arg(−1),

so we need to take a branch of the argument that will give the value arg(−1) = 7π.
In order to attain the required value we take the branch

L6π(w) = Log |w|+ i arg6π(w).

Then 6π < arg6π(w) ≤ 8π, so arg6π(−1) = π + 2kπ = 7π as required.
In conclusion, the required branch is

L6π(z + 4) = Log |z + 4|+ i arg6π(z + 4).
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Question 6 (15 points)

The generalized Cauchy integral formula gives that if f(z) is analytic inside and on a circle Cr
of radius r centered at z0 then

f (n)(z0) =
n!

2πi

∫
Cr

f(z)

(z − z0)n+1
dz.

a. (9 points) Prove that if f(z) is analytic inside and on a circle Cr of radius r centered at
z0 and if |f(z)| ≤M for all z on Cr, then

|f (n)(z0)| ≤ n!M

rn
.

b. (6 points) Prove that if f(z) is analytic for all z in the domain |z − z0| < R and if
|f(z)| ≤M in the same domain, then

|f (n)(z0)| ≤ n!M

Rn
.

[Hint: Apply the result of the previous subquestion. Nevertheless, be careful that you
cannot directly apply this result with r = R since f(z) does not have to be analytic on
the circle CR with |z − z0| = R.]

Solution

a. From the generalized Cauchy integral formula we have

f (n)(z0) =
n!

2πi

∫
Cr

f(z)

(z − z0)n+1
dz.

On Cr we have ∣∣∣∣ f(z)

(z − z0)n+1

∣∣∣∣ =
|f(z)|

|z − z0|n+1
=
|f(z)|
rn+1

≤ M

rn+1
.

Therefore,

|f (n)(z0)| ≤ n!

|2πi|
M

rn+1
(2πr) =

n!M

rn
.

b. For any r with 0 < r < R we have from the given assumptions that f(z) is analytic inside
and on Cr and |f(z)| ≤ M on Cr. Therefore, for any such r we have from the previous
subquestion

|f (n)(z0)| ≤ n!M

rn
.

Suppose now that

|f (n)(z0)| > n!M

Rn
.

Then

R >

(
n!M

|f (n)(z0)|

)1/n

.
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Take now any r such that (
n!M

|f (n)(z0)|

)1/n

< r < R.

Then

n!M

rn
< |f (n)(z0)|

which contradicts our previous result. Therefore we must have

|f (n)(z0)| ≤ n!M

Rn
.

Another way to obtain the same result is to take the limit r → R− of the relation

|f (n)(z0)| ≤ n!M

rn
.

Then

|f (n)(z0)| ≤ lim
r→R−

n!M

rn
=
n!M

Rn
.
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